#### How to Scale Microgrid Deployments?

Ram Rajagopal
Stanford University

Talk partly based on "Challenges that Deter Microgrid Deployment", Lizzy Kolar, Oluwaseyi Olaleye, Paul Walter & Raymond Zhen. Stanford B&W Tech Report 2020 and "Stanford Community Microgrid Design", Arnab Chatterjee and Caitlin Jaeggli. Stanford B&W Tech Report 2020.

#### Significant practical barriers to scale microgrids

• Out of 187 microgrid developers, only **6**% completed five or more microgrids (Greentech Media, 01/2020)

#### What is a Microgrid?

 A localized group of electricity sources and loads that typically operates connected to and synchronous with the traditional centralized grid, but can disconnect and maintain operations autonomously as physical and/or economical conditions dictate (islandmode)



#### What are key design criteria?

- Costs and incentives
- Revenues
- Time to deploy
- Days of autonomy
- Emissions

•



#### Deploying Powernet in a Farm

- Dairy farms power consumption
  - 50kW per barn

South facing barn roof

Cooling costs \$100-\$150k/year





- Powernet system for barn
  - Solar offsets summer consumption
  - Direct load control
  - Battery 32kWh capacity
  - IOT sensors
  - System coordinated via cloud

#### Powernet at Farms: Challenges

- Complex system integration of IOT sensors, inverters, load controllers and weather station
- Balancing a three-phase system solution remains a challenge
- Six months to deploy and debug
- Outage support would require additional coordination and switching



• Total system integration cost including controls was 22% (30%+ in the future)

#### Designing a Microgrid for Stanford

- Design a microgrid solution to support 3-day campus islanding
- Prioritize costs and low emissions



- 30 MW buildings
- 10 MW cooling/heating facility
- Existing backup diesel generation 3.7MW

#### Stanford Microgrid: Options

Explore design options (Homer)

|                               | Conventional | Hybrid | Experimental |
|-------------------------------|--------------|--------|--------------|
| Generation in MW              |              |        |              |
| Conventional Generation       |              | _      |              |
| Existing PV                   | 5            | 5      | 5            |
| New Roof PV                   | 0            | 2      | 2            |
| Carport PV                    | 0            | 10     | 10           |
| Diesel Generators             | 4            | 4      | 0            |
| Natural Gas Turbine           | 35           | 0      | 0            |
| Total Conventional Generation | 44           | 21     | 17           |
| Experimental Generation       |              |        |              |
| Biogas Turbine                | 0            | 25     | 20           |
| Dish PV                       | 0            | 0      | 22           |
| Other New PV                  | 0            | 0      | 0            |
| Vertical Wind                 | 0            | 0      | 5            |
| Hydrogen Fuel Cells           | 0            | 0      | 5            |
| Total Experimental Generation | 0            | 25     | 52           |
| Total Generation Capacity     | 44           | 46     | 69           |
| Li-lon Battery (MWh)          | 0            | 117    | 483          |

#### Cost vs Emissions



#### Stanford Microgrid: Challenges

- Integration costs ~30% and > 1
  year permitting and build time
  required
- Coordination of 3.7MW of Diesel Generators and individual building switches very challenging
- Limited ability to explore scenarios that include integration with markets and stabilization



#### Summary



# Technology Challenges: Integrating Devices Across Vendors and Technologies



- Standards exist (e.g. IEEE 2030.7)
- Incentives to integrate across providers?
- Integration with the cloud?

# Technology Challenges: Integrating Devices Across Vendors and Technologies

• Standards exist (e.g. IEEE

Modularization and Standardization realizable?

Brownfield

Integration with the cloud?

### Technology Challenges: Interfacing with the Grid

Islanding Mode

Break before make

Make before break

- Managing power flows
- Synchronization of devices
- Outage readiness and prediction
- Inertia





- Co-optimizing assets
- Managing network constraints
- Marketplace

#### **Economic Challenges**

Costs



• Uncertainty of Revenue

Federal/grant partnerships

Heavy upfront capital

Value of Resiliency

• Time Horizon

Project proposals

Leasing documents

Filing for permits

Customer acquisition

## **Policy Challenges**

Net metering

Zoning, permitting and compliance

New York: only 5 of 64 counties eligible

Funding availability



#### Innovation in Technology

System integration via cloud coordination

Mobile microgrids Bidirectional power flow Battery innovation **Modularity** 

#### Innovation in Business Models



#### Innovation in Regulation



## Questions?